活性药物成分 (API) 是药物产品中具有生物活性的任何物质。这意味着特定的分子实体能够对目标产生特定的生物学效应。这些成分需要满足非常严格的限制;化学和光学纯度被认为是最重要的。利用连续流动的反应流体流的连续流动合成方法可以很容易地与光化学相结合,光化学与光的化学效应一起工作。这些方法可以成为满足这些严格限制的有用工具。这两种方法都是在温和条件下制备具有高度结构复杂性的天然产物或活性药物成分及其前体的独特而强大的工具。
2022-12-14
流动化学不是一个通用的解决方案,也不是对化学中的每个问题都有利。流动化学科学家需要解决的最大问题之一是反应器与固体的相容性。 其他挑战包括专业知识的稀缺、高昂的启动成本和产品的可追溯性。
2022-04-13
与传统的批量合成相比,流动化学提供了许多潜在的好处。 例如,流动反应器有助于快速消散在高放热反应(例如硫酸-硝酸混合、硝化反应或可能的副反应(例如硝基芳族化合物的氧化))过程中产生的热量(高表面体积比) . 流动反应器中的传热速率可以比间歇反应器快几个数量级,这可以防止产生可能刺激副反应或失控反应发生的热点。
2022-04-13
诸如沉淀和系统与试剂的兼容性等问题,将批处理方法转换为流动化学可能很复杂。 通常,由于试剂经过修改以与流动化学过程兼容,因此需要重新优化该方法。 由于流动化学可能不会对所有反应都有益,因此只有在可以实现明显的好处(例如,提高安全性)时,将已建立的批处理过程更改为连续流动才有意义。
2022-04-12
从羧酸中光化学挤出 CO2 是化学和区域选择性功能化反应的有效策略。这部分是由于与气态 CO2 的释放相关的巨大驱动力。 另一方面,在有用化学品的合成中使用 CO2 作为 C1 结构单元为安装羧酸官能团提供了令人兴奋的机会。
2022-03-04
芳香化合物的硝化是常用的生产工艺,目前化工领域普遍采用的硝化方法是以混合酸作硝化剂、在釜式反应器中进行间歇式反应,在生产的各个环节都存在着资源、环境、安全、能源等问题。 微通道反应器相对于釜式反应器拥有持液量少,换热效率高,传质效率好,过程可控等诸多优势,能有效解决硝化反应中的传质,换热,安全性等问题。随着微化工技术的发展,越来越多地被用于芳香化合物的硝化反应。
2022-02-14
流动反应器系统的封闭环境提供了更安全的工作条件,防止操作员直接接触危险化学品。小型设备需要更少的实验室空间,由于出色的传质和传热,反应器小型化本质上提高了反应质量。借助合适的过程分析技术 (PAT) 和纯化模块的集成,连续流过程可以伸缩和自动化,从而加快生产保持产品质量并提高产品吞吐量 。伸缩过程也改善了制造过程的绿色方面,因为反应产物在用于下一步之前不需要分离和储存,而是可以直接流入下一个反应器 。
2021-12-14
连续流动化学能提高安全性,缩短批次时间,提高质量和产率。由于连续流动技术的内在设计,可以达到批次反应无法安全达到的反应条件。 其结果是质量更高、杂质更少和反应循环时间更快的产物。
2021-08-16