新闻资讯

  • 间歇式和流动式反应器中不同生物活性白藜芦醇类似物的光化学转化

    卟啉光催化剂存在下,在间歇式和微反应器中对这些化合物并行进行光化学转化,显示了流动光化学在生产率、选择性和产率方面的显着优势。 本研究通过比较白藜芦醇类似物的光催化和直接照射(光解)产物,阐明产物的类型和比例如何取决于激发能,揭示取代基对光诱导反应的影响,并通过实验合理化 并计算所得产品的性质和比例。

    2024-01-02

  • 通过芳基亚胺的光化学重排连续流动合成亚硝基芳烃

    亚硝基芳烃是多功能的有机砌块,研究人员提出了一种新的流向这些实体的连续流动路线。这种方法成功的关键是使用三氟乙醇作为溶剂,使用高功率发光二极管(365 nm)作为光源,提供均匀的照射和高效率的连续流动方法。该工艺快速而稳健,具有高官能团耐受性和高通量。亚硝基部分的形成得到了包括X射线晶体学在内的全光谱分析的支持。这种流动方法的可扩展性允许获得克量的亚硝基物质,为此我们重点介绍了一小组衍生化反应,强调了它们的合成效用。

    2023-12-25

  • 从伯烷基胺模块化自动合成螺环四氢萘啶

    螺环四氢萘啶 (THN) 是药物发现活动的宝贵支架,但由于缺乏模块化和可扩展的合成方法,进入这个 3D 化学空间受到阻碍。 我们在此报告了 α-烷基化和螺环 1,2,3,4-四氢-1,8-萘啶(“1,8-THN”)及其区域异构体 1,6-THN 的自动连续流动合成 来自丰富的伯胺原料的类似物。 基于光氧化还原催化卤代乙烯基吡啶氢氨烷基化 (HAA) 的环形断开方法与分子内 SNAr N-芳基化相结合进行测序。 为了获得剩余的 1,7- 和 1,5-THN 异构体,光氧化还原催化的 HAA 步骤与钯催化的 C-N 键形成叠合。 总而言之,这提供了使用相同的键断开从一组常见的未受保护的伯胺起始材料中获得四个异构 THN 核心的高度模块化途径。 辉瑞 MC4R 拮抗剂 PF-07258669 螺环 THN 核心的简明合成说明了该方法的简化能力。

    2023-10-19

  • 流式光按需从氯仿合成Vilsmeier试剂和酰氯及其在羰基化合物连续流动合成中的应用

    用于多种有机反应的光气和 Vilsmeier 试剂 (VR) 在空气中不稳定。 光气还具有极高的毒性。 它们的安全使用,特别是在工业中,是流动有机合成中的一个重要问题。 本研究报告了用氯仿(CHCl3)的流动光化学氧化产生的光气(COCl2)流动合成酰氯和VR。 该系统适用于酯类、羧酸酐类、酰胺类、芳醛前体、β-氯丙烯醛前体的连续流合成。 流动反应系统中的密闭空间有利于安全有效地将CHCl3转化为COCl2和DMF转化为VR,以及随后的羧酸氯化、芳香族化合物的甲酰化以及乙酰基与VR的氯化和甲酰化。

    2023-09-18

  • 使用 TEMPO/NaOCl 连续流动氧化醇以选择性和可规模化合成醛

    研究人员已经开发出一种稳健的连续流动工艺,用于多种伯醇和仲醇的选择性氧化。 该过程使用催化量的TEMPO以及 NaBr/NaOCl 作为简单且经济高效的氧化剂系统。 在整个研究中,对停留时间、反应器类型和温度等关键参数进行了评估,以获得有效的反应条件,从而在较短的停留时间内以高化学产率生产各种醛和酮。 一项探索性研究还展示了将基于流动的氧化与连续萃取分离相结合的可行性,方法是将环丁酮转化为其亚硫酸氢盐加合物,从而允许与剩余起始材料和其他产品进行相分离。 此外,通过使用相同的流程设置进行多克规模的反应来试验工艺的适用性和可扩展性。 这样可以连续氧化50克苯丙氨酸(Phenprobamate),并放大三氟甲基化恶唑结构单元和 HIV 药物马拉维若(maraviroc)的前体。

    2023-09-13

  • 连续流鲍德温重排工艺的开发及其与传统间歇模式的比较

    利用连续流技术的优势,通过未充分利用的Baldwin重排,开发了一种连续流合成氮丙啶(aziridines)的方法,在5-10分钟的停留时间内,得到了比相应的间歇工艺更高的收率、非对映选择性和吞吐量,具有更大的官能团耐受性的氮丙啶(aziridines)库。所选择的溶剂(即MeCN)起着至关重要的作用,因为它允许持续高的非对异选择性,并且能够将反应混合物过热(高于大气沸点约50°C),从而实现更快的反应速率、更高的收率和最小化的产物分解,这是该流动过程的特征。

    2023-09-12

  • 基于微反应器的多步级联连续流合成AOS

    通过以1-十四(碳)烯为主要原料,并成功实施微反应微型中试平台,实现了烯烃磺酸盐的连续合成。 值得注意的是,水解后,我们获得了超过 90% 的活性物质含量。

    2023-09-07

  • 光催化的实际应用

    近年来,光催化越来越受到人们的关注,但这绝不是一个新概念。 它在一百多年前就被首次讨论,但在 20 世纪的大部分时间里,它基本上被视为科学新奇事物而被忽视。 然而,20 世纪 70 年代,先驱们响应社会对有效和可持续制氢的关注,为技术注入了新的活力。 此后,它对许多科学领域产生了变革性的影响。 简而言之:光催化涉及在催化剂存在下加速光反应。 光催化材料有效地利用光产生的能量来推动各种化学反应。深入

    2023-09-06

TOP