新闻资讯

  • 流动中吡唑啉类的光化学合成

    吡唑啉及其吡唑同族元素是重要的杂环砌块,在精细化工行业中具有众多应用。然而,通往这些实体的传统途径是基于产生大量化学废物的多步骤合成。在这里,我们报告了一种使用紫外光通过无试剂photo-click策略将四唑转化为吡唑啉的替代方法。该路线原位生成丁腈亚胺偶极子,这些偶极子被不同的亲偶极试剂捕获,从而以高化学产量选择这些杂环靶标。最终实现了连续流动方法,该方法以安全且易于扩展的方式生成多克数量的产品

    2023-03-08

  • 用于制造活性药物成分的连续流动化学和光化学(二)

    光化学最近引起了研究人员的极大关注。第一个原因是使用连续流动反应器,它在处理这种光化学反应时提供了很大程度的操作灵活性。第二个原因是反应可以以高度选择性和温和的方式进行(室温、可见光和避免有毒化学品)。在这种情况下,流动和光化学的结合是近年来成功采用的一种优秀方法。

    2022-12-15

  • 一锅重氮装置——光化学氧化(蓝色 LED-O 2)芳基杂芳基乙酸酯与环状 2°-胺的酰胺化:芳香族 α-酮酰胺的环保合成

    芳香族-α-酮酰胺是一类有趣的分子。它们具有无数的生物学特性,也经常用作合成杂环支架的构件。在此,我们报道了芳香族-α-酮酰胺的环保合成。它是一种一锅法合成,从烷基芳基/杂芳基乙酸酯 7a-k 开始,分子氧中的各种环状仲胺 8a-c 作为氧化剂,通过重氮安装-氧化-酰胺化在乙酸乙酯作为溶剂中使用 5-6 W 微光化学反应器带有蓝色 LED 灯 (435–445 nm) 到目标化合物。该反应也可以在没有氧化剂的情况下在空气中进行,但这有助于主要形成不需要的 NH 插入产物。在氧气气氛下,此类副产物的形成减少到 10-20%。各种芳香族-α-酮酰胺 10a-x 以中等至高产率合成。对照实验为转化机制提供了合理的依据。该协议可以按克级放大。

    2022-09-22

  • 连续光化学苯炔形成工艺的开发

    提出了一种连续流动工艺,该工艺能够在光化学条件下安全地生成和衍生苯。 新的大功率 LED 灯发出 365 nm 的光,这有助于实现这一目标。 由此产生的流动过程基于可调节背压调节器有效控制气态副产品的释放,并在 3 分钟的短停留时间内提供一系列杂环产品。 该方法的稳健性在benzotriazoles, 2H-indazoles 和各种呋喃衍生加合物的快速生成中得到证明,通过简单且易于扩展的流动协议促进这些重要的杂环支架的制备。

    2022-09-05

  • 利用双环[1.1.1]戊基自由基的sp2性质实现了[1.1.1]螺桨烷的双官能团化反应

    近日,宾夕法尼亚大学Gary A. Molander教授课题组在Nature Chemistry上发表了题为“Exploiting the sp2 character of bicyclo[1.1.1]pentyl radicals in the transition-metal-free multi-component difunctionalization of [1.1.1]propella

    2022-09-02

  • 劳拉西泮连续流动合成的开发

    劳拉西泮(Lorazepam)是一种广泛使用的镇静剂,出现在世界卫生组织的基本药物清单中,经常出现短缺。 使用涉及路线探索、高通量实验和杂质分析的工作流程来开发最佳序列,我们报告了一种用于流式合成劳拉西泮的新型 5 步路线。 这五个步骤包括 N-酰化(N-acylation)、二氮杂环闭合(diazepine ring closure)、亚胺 N-氧化(imine N-oxidation)、Polonovski 型重排和酯水解得到劳拉西泮。

    2022-08-17

  • 连续流动技术作为利用卡宾、氮烯和苯炔的创新转型的推动力

    使用小型连续流动系统可以有效利用高反应性中间体。 通过将高质量和热传递相结合,除了提高光化学反应的效率外,流动化学还提供了获得以前未描述的反应性的途径。 这提供了进入以前无法获得的化学空间并加速发现新反应的机会。 虽然本文描述的一些领域仍然不发达,特别是氮烯的使用,但流动方法的发展可能会加速它们的广泛使用并推动该领域的新创新。

    2022-06-17

  • 光催化有机合成中的新兴概念

    可见光光催化已成为有机合成中的强大工具,它使用光子作为无痕、可持续的试剂。该领域的大多数活动都集中在通过常见的光氧化还原开发新反应,但最近一些令人兴奋的新概念和策略进入了鲜为人知的领域。我们调查了能够使用更长波长的方法,并表明光子的波长和强度是重要参数,可以调节光催化剂的反应性以控制或改变化学反应的选择性。此外,我们讨论了最近替代强还原剂的努力,如元素锂和钠,通过光和技术领域的进步。

    2022-04-19

上一页1234下一页 转至第
TOP