微流控专业服务提供商!

迈库弗洛微流控技术(常州)有限公司

示例图片三
首页 > 新闻资讯 > 技术资讯

生物制药:连续流生物酶催化反应

生物催化是利用分离的酶和整个细胞进行化学转化。利用生物催化,可以用更清洁、有效的工艺来取代现有的化学过程,开发新的环境友好型工艺。生物催比传统化学工艺更具优势- 提高产能、反应条件较为温和、选择性更强、后处理简单。酶催化可带来更安全的化学/工艺及更好的成本效益。

酶可以通过提高收率和缩短合成路线来提高产能,并且反应条件较为温和,反应主要在室温下的水中进行。酶可以取代昂贵的手性拆分试剂,所获得的对映体、区域选择性通常比传统化学高得多。它还可以简化工作,减少副产品,降低杂质水平,减少浪费。

1.  研究背景

目前,在工业过程安全和废物处理的环境法规日渐严格的情况下,连续流反应设计与研究都加速发展。连续流反应器是让有机合成更绿色的现代工具之一,与传统的间歇式工艺相比,使用连续流反应器的流程系统有几个优点:

废物产生量较低,实验条件更安全;

更高效传质与传热,精确的温度控制,可以避免有害的副反应;

快速的早期反应条件优化和后期工业化无缝放大等。

2019年6月20日,波兰西里西亚理工大学(Silesian University of Technology)的Anna Szelwickaa等研究人员在OPRD期刊上发表了最新连续流生物酶催化反应的研究成果。

作者研究了在多壁碳纳米管上,通过简单的物理吸附固定化的南极假丝酵母脂肪酶B,连续酶催化Baeyer-Villiger氧化反应。

纳米生物催化剂用于从乙酸乙酯和30%(重量)水溶液中生成过酸,过氧化氢作为主要氧化剂。高稳定性和活性纳米生物催化剂发生Baeyer-Villiger反应,将2-甲基环己酮氧化成6-甲基-ε-己内酯,得到收率(87%)和选择性(> 99%) 。

反应中使用了环境友好的乙酸乙酯作为溶剂和过酸前体。为了确定最有利的反应条件,作者进行了各种参数的一系列实验,同时比较了间歇釜与连续流中固定化酶的回收率。

这项工作的主要贡献在于它首次应用纳米生物催化剂在流动系统中 - 酶促Baeyer-Villiger氧化反应。

 

该工艺最终产物为内脂的一种。内酯属于精细化学领域的关键物质,适用于制药,食品,化妆品,香水和聚合物工业。精细化学品市场预计将以5.76%的复合年增长率增长,到2023年将达到201.57亿美元。

在这里,通过开发流动化学 - 酶促连续工艺,证明了使用连续流动反应器是该类化合物绿色化生产的方便可扩展的有效方法。

连续流生物酶催化反应

1. 研究中使用的流动系统图

2. 实验部分:

由于篇幅限制,这里着重介绍连续流工艺。作者进行了大量的间歇釜反应,测定标准为不同反应体系(包含间歇式与连续流)下回收的固定化酶活性。

图2.  化学酶促Baeyer-Villiger氧化2-甲基环己酮

2.  化学酶促Baeyer-Villiger氧化2-甲基环己酮

有机相:辛酸与底物和溶剂的混合物

流动Baeyer-Villiger工艺:如图2, 8bar压力下,泵A泵送有机相(酮浓度:4.50mmol(0.504g)/ 10mL乙酸乙酯),泵B泵送30%重量的过氧化氢水溶液(20-80摩尔过量),总流量设定为0.040-0.133mL / min。

使用各种停留时间(12-38分钟)和恒定量的(纳米)生物催化剂(0.5g),在25-55℃下进行该过程2-24小时。在此过程中,取样进行GC-FID分析(在0.5mL二氯甲烷中稀释100μL样品)。

为了合成6-甲基-ε-己内酯,作者开发了专用的分离方法。

 

2-甲基环己酮氧化后,收集反应混合物(25mL),向其中加入水(25mL),先使用饱和的水溶液洗涤有机相,然后碳酸氢钠溶液(3×25mL)洗涤。

接下来,使用二氯甲烷(3×25mL)萃取收集的水相,将有机相经无水MgSO4干燥并在减压下(8mbar,25℃,1h)浓缩。

通过柱色谱法纯化残余物,使用二氧化硅作为固定相,用己烷:乙酸乙酯8:2v / v作为洗脱液,得到90%的内酯。

 

内酯类化合物进一步扩展得到了如下表:

3.  在流动反应器中进行的化学酶Baeyer-Villiger氧化中底物类型对酮转化的影响

在流动反应器中进行的化学酶Baeyer-Villiger氧化中底物类型对酮转化的影响

通过GC测定酮的转化率如上表,对内酯的选择性为100%。

3. 实验总结:

通过与间歇过程的比较,证明了高效流动系统在固定化酶催化的Baeyer-Villiger氧化中的应用。

这种方法保证了产物收率高,并且消除了处理不稳定和极其危险的过酸的需要。

通过物理吸附固定在商业上可获得的未改性MWCNT(Nanocyl NC7000)上的由南极假丝酵母脂肪酶B组成的高活性和稳定的纳米生物催化剂已首次使用流动化学进行了证明。

 

实验证明:30%过氧化氢可成功用作2-甲基环己酮氧化成6-甲基-ε-己内酯的绿色主要氧化剂。使用温和的反应条件(40℃)在短的反应时间(5分钟)内获得高转化率的底物(87%),而纳米生物催化剂甚至在乙酸乙酯中进行该过程8小时后也是稳定的。

总之,这项工作无可否认地代表了对内酯的化学酶促氧化的极其有效的方法。在流动系统中使用稳定的纳米生物催化剂已被证明是用于从精细化学品领域合成化合物的通用且可扩展的方法。

参考文献:Org. Process Res. Dev., • DOI: 10.1021/acs.oprd .9b00132 •  Publication Date (Web): 20 Jun 2019

通过这两个案例的介绍,不难发现无论是微通道反应器或固定床反应器,连续流技术在酶催化反应中的应用会越来越受到重视。研发和工业化的成果也会越来越多。